Login / Signup

Associative learning in peripersonal space: fear responses are acquired in hand-centered coordinates.

Alessandro ZaniniRomeo SalemmeAlessandro FarnèClaudio Brozzoli
Published in: Journal of neurophysiology (2021)
Space coding affects perception of stimuli associated to negative valence: threatening stimuli presented within the peripersonal space (PPS) speed up behavioral responses compared with nonthreatening events. However, it remains unclear whether the association between stimuli and their negative valence is acquired in a body part-centered reference system, a main feature of the PPS coding. Here we test the hypothesis that associative learning takes place in hand-centered coordinates and can therefore remap according to hand displacement. In two experiments, we used a Pavlovian fear-learning paradigm to associate a visual stimulus [light circle, the conditioned stimulus (CS)] with an aversive stimulus (electrocutaneous shock) applied on the right hand only when the CS was displayed close (CS+) but when not far from it (CS-). Measuring the skin conductance response (SCR), we observed successful fear conditioning, with increased anticipatory fear responses associated with CS+. Crucially, experiment I showed a remapping of these responses following hand displacement, with a generalization to both types of CS. Experiment II corroborated and further extended our findings by ruling out the novelty of the experimental context as a driving factor of such modulations. Indeed, fear responses were present only for stimuli within the PPS but not for new stimuli displayed outside the PPS. By revealing a hand-centered (re)mapping of the conditioning effect, these findings indicate that associative learning can arise in hand-centered coordinates. They further suggest that the threatening valence of an object also depends on its basic spatial relationship with our body.NEW & NOTEWORTHY Associative fear learning takes place in hand-centered coordinates. Using a Pavlovian fear-learning paradigm, we show that the anticipatory skin conductance response indicating the association between the negative value and an initially neutral stimulus is acquired and then remapped in space when the stimulated body part moves to a different position. These results demonstrate the relationship between the representation of peripersonal space and the encoding of threatening stimuli. Hypotheses concerning the underlying neural network are discussed.
Keyphrases
  • prefrontal cortex
  • neural network
  • deep learning
  • mass spectrometry