Login / Signup

Human keratin 1/10-1B tetramer structures reveal a knob-pocket mechanism in intermediate filament assembly.

Sherif A EldiranyMinh HoAlexander J HinbestIvan B LomakinChristopher G Bunick
Published in: The EMBO journal (2019)
To characterize keratin intermediate filament assembly mechanisms at atomic resolution, we determined the crystal structure of wild-type human keratin-1/keratin-10 helix 1B heterotetramer at 3.0 Å resolution. It revealed biochemical determinants for the A11 mode of axial alignment in keratin filaments. Four regions on a hydrophobic face of the K1/K10-1B heterodimer dictated tetramer assembly: the N-terminal hydrophobic pocket (defined by L227K1, Y230K1, F231K1, and F234K1), the K10 hydrophobic stripe, K1 interaction residues, and the C-terminal anchoring knob (formed by F314K1 and L318K1). Mutation of both knob residues to alanine disrupted keratin 1B tetramer and full-length filament assembly. Individual knob residue mutant F314AK1, but not L318AK1, abolished 1B tetramer formation. The K1-1B knob/pocket mechanism is conserved across keratins and many non-keratin intermediate filaments. To demonstrate how pathogenic mutations cause skin disease by altering filament assembly, we additionally determined the 2.39 Å structure of K1/10-1B containing a S233LK1 mutation linked to epidermolytic palmoplantar keratoderma. Light scattering and circular dichroism measurements demonstrated enhanced aggregation of K1S233L/K10-1B in solution without affecting secondary structure. The K1S233L/K10-1B octamer structure revealed S233LK1 causes aberrant hydrophobic interactions between 1B tetramers.
Keyphrases
  • endothelial cells
  • wild type
  • ionic liquid
  • single cell
  • single molecule
  • induced pluripotent stem cells
  • high resolution
  • mass spectrometry
  • resting state