Pair-Variational Autoencoders for Linking and Cross-Reconstruction of Characterization Data from Complementary Structural Characterization Techniques.
Shizhao LuArthi JayaramanPublished in: JACS Au (2023)
In materials research, structural characterization often requires multiple complementary techniques to obtain a holistic morphological view of a synthesized material. Depending on the availability and accessibility of the different characterization techniques (e.g., scattering, microscopy, spectroscopy), each research facility or academic research lab may have access to high-throughput capability in one technique but face limitations (sample preparation, resolution, access time) with other technique(s). Furthermore, one type of structural characterization data may be easier to interpret than another (e.g., microscopy images are easier to interpret than small-angle scattering profiles). Thus, it is useful to have machine learning models that can be trained on paired structural characterization data from multiple techniques (easy and difficult to interpret, fast and slow in data collection or sample preparation) so that the model can generate one set of characterization data from the other. In this paper we demonstrate one such machine learning workflow, Pair-Variational Autoencoders (PairVAE), that works with data from small-angle X-ray scattering (SAXS) that present information about bulk morphology and images from scanning electron microscopy (SEM) that present two-dimensional local structural information on the sample. Using paired SAXS and SEM data of newly observed block copolymer assembled morphologies [open access data from Doerk G. S.; et al. Sci. Adv.2023, 9 ( (2), ), eadd3687], we train our PairVAE. After successful training, we demonstrate that the PairVAE can generate SEM images of the block copolymer morphology when it takes as input that sample's corresponding SAXS 2D pattern and vice versa. This method can be extended to other soft material morphologies as well and serves as a valuable tool for easy interpretation of 2D SAXS patterns as well as an engine for generating ensembles of similar microscopy images to create a database for other downstream calculations of structure-property relationships.
Keyphrases
- electronic health record
- big data
- machine learning
- high resolution
- high throughput
- optical coherence tomography
- deep learning
- convolutional neural network
- artificial intelligence
- emergency department
- spinal cord injury
- computed tomography
- high speed
- mass spectrometry
- drug delivery
- body composition
- social media
- resistance training
- molecular dynamics simulations
- long term care
- simultaneous determination