Fabrication, Characterization, and Analytical Application of Silica Nanopore Array-Modified Platinum Electrode.
Ping ZhouLina YaoBin SuPublished in: ACS applied materials & interfaces (2020)
In this work, we report a new approach to fabricate the nanopore array electrode (NAE) by transferring silica nanochannel membrane (SNM) to the surface of Pt electrode (0.5 mm in diameter) sealed by glass capillary (designated as Pt-NAE for simplicity). The SNM is supported via the irreversible covalent-bond formation with the surrounding glass capillary treated by plasma, thus providing long-term stability to Pt-NAE. Meanwhile, this fabrication process does not require pregrafting or premodification of Pt electrode surface, providing well-defined active surface domains. Thanks to the small pore diameter (∼2.3 nm) and negatively charged channel walls, the SNM is permselective and thus the electrochemical behavior of Pt-NAE is dependent on both electrolyte concentration and charge state of redox molecules. The permeability of SNM was determined by the scanning electrochemical microscopy (SECM) approach curve measurements coupled with finite-element simulations from a quantitative viewpoint. The permeability of anionic Ru(CN)64- was varied from 150 to 10.3 μm s-1 as the electrolyte concentration decreased from 1.0 to 0.01 M, while there is no obvious change for cationic Ru(NH3)63+. Finally, the as-prepared Pt-NAE is able to continuously monitor dissolved oxygen for up to 2 h in a solution containing biofouling reagents, exhibiting an enhanced antifouling ability and therefore excellent current stability. We believe the NAE with unique mass transport properties can be extended further for other analytical applications.
Keyphrases
- solid state
- high resolution
- ionic liquid
- single molecule
- high throughput
- gold nanoparticles
- carbon nanotubes
- endothelial cells
- squamous cell carcinoma
- molecular dynamics
- room temperature
- liquid chromatography
- electron transfer
- tissue engineering
- optical coherence tomography
- lymph node metastasis
- simultaneous determination