Login / Signup

Distributed sensing along fibers for smart clothing.

Brett C HanniganTyler J CuthbertChakaveh AhmadizadehCarlo Menon
Published in: Science advances (2024)
Textile sensors transform our everyday clothing into a means to track movement and biosignals in a completely unobtrusive way. One major hindrance to the adoption of "smart" clothing is the difficulty encountered with connections and space when scaling up the number of sensors. There is a lack of research addressing a key limitation in wearable electronics: Connections between rigid and textile elements are often unreliable, and they require interfacing sensors in a way incompatible with textile mass production methods. We introduce a prototype garment, compact readout circuit, and algorithm to measure localized strain along multiple regions of a fiber. We use a helical auxetic yarn sensor with tunable sensitivity along its length to selectively respond to strain signals. We demonstrate distributed sensing in clothing, monitoring arm joint angles from a single continuous fiber. Compared to optical motion capture, we achieve around five degrees error in reconstructing shoulder, elbow, and wrist joint angles.
Keyphrases
  • low cost
  • wastewater treatment
  • neural network
  • high speed
  • machine learning
  • high resolution
  • deep learning
  • electronic health record
  • heart rate
  • blood pressure
  • mass spectrometry