Login / Signup

Acrolein Increases the Pulmonary Tumorigenic Activity of the Tobacco-Specific Nitrosamine 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK).

Lisa A PetersonDonna SeabloomWilliam E SmithKarin R VevangDavis M SeeligLin ZhangTimothy S Wiedmann
Published in: Chemical research in toxicology (2022)
Tobacco smoke is a complex mixture of more than 7000 chemicals, of which many are toxic and/or carcinogenic. Many hazard assessments of tobacco have focused on individual chemical exposures without consideration of how the chemicals may interact with one another. Two chemicals, the human carcinogen 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) and a possible human carcinogen, acrolein, were hypothesized to interact with one another, possibly owing to the additive effects of DNA adduct formation or influence on the repair of mutagenic DNA adducts. To test our hypothesis that coexposure to NNK and acrolein is more carcinogenic than either chemical alone, A/J mice were exposed to NNK (i.p., 0, 2.5, or 7.5 μmol in saline) in the presence or absence of inhaled acrolein (15 ppmV). While the single 3 h exposure to acrolein alone did not induce lung adenomas, it significantly enhanced NNK's lung carcinogenicity. In addition, mice receiving both NNK and acrolein had more adenomas with dysplasia or progression than those receiving only NNK, suggesting that acrolein may also increase the severity of NNK-induced lung adenomas. To test the hypothesis that the interaction was due to effects on DNA adduct formation and repair, NNK- and acrolein pulmonary DNA adduct levels were assessed. There was no consistent effect of the coexposure on NNK-derived DNA adducts, and acrolein DNA adducts were not elevated above endogenous levels. This study supports the hypothesis that tobacco smoke chemicals combine to contribute to the carcinogenic potency of tobacco smoke, and the mechanism of interaction cannot be explained by alterations of DNA adduct levels.
Keyphrases