Neuromechanical force-based control of a powered prosthetic foot.
Amirreza NaseriMartin GrimmerAndré SeyfarthMaziar Ahmad SharbafiPublished in: Wearable technologies (2020)
This article presents a novel neuromechanical force-based control strategy called FMCA (force modulated compliant ankle), to control a powered prosthetic foot. FMCA modulates the torque, based on sensory feedback, similar to neuromuscular control approaches. Instead of using a muscle reflex-based approach, FMCA directly exploits the vertical ground reaction force as sensory feedback to modulate the ankle joint impedance. For evaluation, we first demonstrated how FMCA can predict human-like ankle torque for different walking speeds. Second, we implemented the FMCA in a neuromuscular transtibial amputee walking simulation model to validate if the approach can be used to achieve stable walking and to compare the performance to a neuromuscular reflex-based controller that is already used in a powered ankle. Compared to the neuromuscular model-based approach, the FMCA is a simple solution with a sufficient push-off that can provide stable walking. Third, to assess the ability of the FMCA to generate human-like ankle biomechanics during walking at the preferred speed, we implemented this strategy in a powered prosthetic foot and performed experiments with a non-amputee subject. The results confirm that, for this subject, FMCA can be used to mimic the non-amputee reference ankle torque and the reference ankle angle. The findings of this study support the applicability and advantages of a new bioinspired control approach for assisting amputees. Future experiments should investigate the applicability to other walking speeds and the applicability to the target population.