Login / Signup

Near-Infrared-Light-Assisted in Situ Reduction of Antimicrobial Peptide-Protected Gold Nanoclusters for Stepwise Killing of Bacteria and Cancer Cells.

Shuxian ZhuXiaoyu WangShengliang LiLu LiuLidong Li
Published in: ACS applied materials & interfaces (2020)
Biomolecule-protected gold nanostructures show good performance in biomedical applications. However, precise control over gold nanocluster (AuNC) preparation with biomolecules remains challenging. Here, we develop a simple near-infrared (NIR)-light-assisted method for in situ reduction of antimicrobial peptide (AMP)-protected AuNCs. Take advantage of the high photothermal conversion efficiency of the conjugated polymer (CP) upon NIR light irradiation, we promote the rapid reduction of AuNCs by the AMP on the surface of the CP. The fluorescent properties of the AuNCs were improved owing to the formation of a unique Au(0)NC@Au(I)AMP core-shell nanostructure. This nanostructure is attributed to the rapid reduction of Au(0) and collision and fusion of Au(0) at high temperatures. Integrating antibacterial AMPs, fluorescent AuNCs, and photothermal CPs, the composites facilitated different killing mechanisms for both bacteria and cancer cells. This material system provides an all-in-one strategy for the stepwise killing of cancer cells and bacterial infection.
Keyphrases