Login / Signup

Dual Enzymatic Reaction-Assisted Gemcitabine Delivery Systems for Programmed Pancreatic Cancer Therapy.

Haijie HanDaniel ValdepérezQiao JinBin YangZuhong LiYulian WuBeatriz PelazWolfgang J ParakJian Ji
Published in: ACS nano (2017)
Dual enzymatic reactions were introduced to fabricate programmed gemcitabine (GEM) nanovectors for targeted pancreatic cancer therapy. Dual-enzyme-sensitive GEM nanovectors were prepared by conjugation of matrix metalloproteinase-9 (MMP-9) detachable poly(ethylene glycol) (PEG), cathepsin B-cleavable GEM, and targeting ligand CycloRGD to CdSe/ZnS quantum dots (QDs). The GEM nanovectors decorated with a PEG corona could avoid nonspecific interactions and exhibit prolonged blood circulation time. After GEM nanovectors were accumulated in tumor tissue by the enhanced permeability and retention (EPR) effect, the PEG corona can be removed by overexpressed MMP-9 in tumor tissue and RGD would be exposed, which was capable of facilitating cellular internalization. Once internalized into pancreatic cancer cells, the elevated lysosomal cathepsin B could further promote the release of GEM. By employing dual enzymatic reactions, the GEM nanovectors could achieve prolonged circulation time while maintaining enhanced cellular internalization and effective drug release. The proposed mechanism of the dual enzymatic reaction-assisted GEM delivery system was fully investigated both in vitro and in vivo. Meanwhile, compared to free GEM, the deamination of GEM nanovectors into inactive 2',2'-difluorodeoxyuridine (dFdU) could be greatly suppressed, while the concentration of the activated form of GEM (gemcitabine triphosphate, dFdCTP) was significantly increased in tumor tissue, thus exhibiting superior tumor inhibition activity with minimal side effects.
Keyphrases
  • cancer therapy
  • quantum dots
  • drug delivery
  • drug release
  • hydrogen peroxide
  • locally advanced
  • squamous cell carcinoma
  • endothelial cells
  • radiation therapy
  • nitric oxide
  • sensitive detection