Pressure-Induced Emission Enhancement and Multicolor Emission for 1,2,3,4-Tetraphenyl-1,3-cyclopentadiene: Controlled Structure Evolution.
Yarong GuHaichao LiuRan QiuZhaodong LiuChunyu WangTomoo KatsuraHua ZhangMin WuMingguang YaoHaiyan ZhengKuo LiYajie WangKai WangBing YangYuguo MaBo ZouPublished in: The journal of physical chemistry letters (2019)
Mechanoresponsive luminescent (MRL) materials have attracted considerable attention because of their potential applications in mechanical sensors, memory chips, and security inks; MRL materials possessing high efficiency and multicolor emission qualities are especially interesting. In this Letter, we found 1,2,3,4-tetraphenyl-1,3-cyclopentadiene (TPC) crystal exhibited both pressure-induced emission enhancement (PIEE) and multicolor behavior. In addition, infrared spectroscopy analysis indicated that the ring-opening reaction of the phenyl ring occurred when pressure was beyond 24.7 GPa. The reaction was promoted from 24.7 to 35.9 GPa, which resulted in the redder irreversible color change for the sample released from 35.9 GPa than from 24.7 GPa. The results regarding the mechanoresponsive behavior of TPC offered a deep insight into PIEE and multicolor properties from the structural point of view and inspired the idea of capturing different colors by hydrostatic pressure, which will facilitate the design of and search for high-performance MRL materials.