Login / Signup

Effect of maize root exudates on indole-3-acetic acid production by rice endophytic bacteria under influence of L-tryptophan.

Arun KarnwalAradhana Dohroo
Published in: F1000Research (2018)
Background: It is assumed that plant growth regulators produced by beneficial bacterial species could also influence plant growth. IAA is a major plant growth regulator responsible for stimulation of plant growth. There are several microorganisms which are naturally responsible for L- tryptophan metabolism. Methods: In total, 56 indigenous morphologically distinct isolates from rice roots were selected and subsequently characterized with biochemical tests, 16S rRNA sequencing and plant growth promoting activities. Pseudomonasfluorescens RE1 (GenBank: MF102882.1) and RE17 (GenBank: MF103672.1) endophytes resulted in better PGP activity against the other 54 isolates. Both endophytes were tested to screen indole-3-acetic acid production ability in pure culture conditions with L-tryptophan at 0, 50, 100, 200 and 500µg/ml concentrations. Results: P.fluorescens RE1 was recorded efficient for indole production in comparison to P. fluorescens RE17 at various L-tryptophan concentrations. P. fluorescens RE1 was shown to produce between 0.8 µg/ml and 11.5µg/ml of indole at various tryptophan concentrations, while RE17 produced between 1.2µg/ml and 10.2µg/ml. At 200 and 500µg/ml tryptophan concentration, P. fluorescens RE17 produced 7.4pmol/ml and 9.3pmol/ml IAA, respectively.  Conclusions: Inoculation of maize seed with P. fluorescens RE1 and RE17 showed a significantly higher level of IAA production in comparison to non-inoculated seeds. Current study outcomes proved that plant growth regulators produced by Pseudomonas species could also play a critical role in plant growth promotion.
Keyphrases
  • plant growth
  • transcription factor
  • single cell
  • type diabetes
  • genetic diversity
  • insulin resistance
  • skeletal muscle
  • staphylococcus aureus
  • cystic fibrosis
  • biofilm formation