Login / Signup

A Study on Aqueous Dispersing of Carbon Black Nanoparticles Surface-Coated with Styrene Maleic Acid (SMA) Copolymer.

Jaeseon LeeJihyun BaeWoonjung KimSeungho Lee
Published in: Polymers (2022)
Carbon black (CB) particles tend to aggregate in aqueous solutions, and finding an optimum dispersing condition (e.g., selection of the type of dispersant) is one of the important tasks in related industries. In the present study, three types of styrene maleic acid (SMA) copolymer dispersants were synthesized, labeled respectively 'SMA-1000', 'SMA-2000', and 'SMA-3000', which have 1, 2, and 3 styrene groups in their repeating units. Then, asymmetrical flow field-flow fractionation (AsFlFFF) was employed to measure the particle size distributions of the aqueous CB dispersions. For the particle size analysis of the CB dispersions, dynamic light scattering (DLS) showed relatively lower reproducibility than AsFlFFF. AsFlFFF showed that the use of SMA-3000 yielded a CB dispersion with the most uniform particle size distribution. When the SMA-3000 dispersant was used, the particle size tended to increase after 1 h of milling as the milling time increased, probably due to the re-agglomeration of the particles by excessive milling. The particle size distributions from AsFlFFF were consistent with the colorimetric observations. With the SMA-3000 dispersant, the lowest Lāˆ— value was observed after 1 h of milling. The AsFlFFF and colorimetric analyses suggest that a stable CB dispersion can be obtained by either 3-h of milling with the SMA-2000 or 1-h of milling with the SMA-3000.
Keyphrases
  • gold nanoparticles
  • computed tomography
  • ionic liquid
  • living cells
  • physical activity
  • working memory
  • weight loss
  • drug release
  • walled carbon nanotubes