Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Large-Scale Phosphoproteomics with the Production of over 11,000 Phosphopeptides from the Colon Carcinoma HCT116 Cell Line.
Daoyang ChenKatelyn R LudwigOleg V KrokhinVic SpicerZhichang YangXiaojing ShenAmanda B HummonLiangliang SunPublished in: Analytical chemistry (2019)
Phosphoproteomics requires better separation of phosphopeptides to boost the coverage of the phosphoproteome. We argue that an alternative separation method that produces orthogonal phosphopeptide separation to the widely used LC needs to be considered. Capillary zone electrophoresis (CZE) is one important alternative because CZE and LC are orthogonal for phosphopeptide separation and because the migration time of peptides in CZE can be accurately predicted. In this work, we coupled strong cation exchange (SCX)-reversed-phase LC (RPLC) to CZE-MS/MS for large-scale phosphoproteomics of the colon carcinoma HCT116 cell line. The CZE-MS/MS-based platform identified 11,555 phosphopeptides. The phosphopeptide data set is at least 100% larger than that from previous CZE-MS/MS studies and will be a valuable resource for building a model for predicting the migration time of phosphopeptides in CZE. Phosphopeptides migrate significantly slower than corresponding unphosphopeptides under acidic conditions of CZE separations and in a normal polarity. According to our modeling data, phosphorylation decreases peptide's charge roughly by one charge unit, resulting in dramatic decrease in electrophoretic mobility. Preliminary investigations demonstrate that electrophoretic mobility of phosphopeptides containing one phosphoryl group can be predicted with the same accuracy as for nonmodified peptides ( R2 ≈ 0.99). The CZE-MS/MS and LC-MS/MS were complementary in large-scale phosphopeptide identifications and produced different phosphosite motifs from the HCT116 cell line. The data highlight the value of CZE-MS/MS for phosphoproteomics as a complementary separation approach for not only improving the phosphoproteome coverage but also providing more insight into the phosphosite motifs.
Keyphrases
- ms ms
- liquid chromatography
- tandem mass spectrometry
- ultra high performance liquid chromatography
- simultaneous determination
- high performance liquid chromatography
- mass spectrometry
- liquid chromatography tandem mass spectrometry
- high resolution mass spectrometry
- solid phase extraction
- electronic health record
- gas chromatography
- big data
- ionic liquid
- high resolution
- cell proliferation
- machine learning
- single cell
- data analysis
- protein kinase
- capillary electrophoresis