Prediction of Radiation-Induced Hypothyroidism Using Radiomic Data Analysis Does Not Show Superiority over Standard Normal Tissue Complication Models.
Urszula SmyczynskaSzymon GrabiaZuzanna NowickaAnna Papis-UbychRobert BibikTomasz LatusekTomasz Wojciech RutkowskiJacek FijuthWojciech FendlerBartlomiej TomasikPublished in: Cancers (2021)
State-of-art normal tissue complication probability (NTCP) models do not take into account more complex individual anatomical variations, which can be objectively quantitated and compared in radiomic analysis. The goal of this project was development of radiomic NTCP model for radiation-induced hypothyroidism (RIHT) using imaging biomarkers (radiomics). We gathered CT images and clinical data from 98 patients, who underwent intensity-modulated radiation therapy (IMRT) for head and neck cancers with a planned total dose of 70.0 Gy (33-35 fractions). During the 28-month (median) follow-up 27 patients (28%) developed RIHT. For each patient, we extracted 1316 radiomic features from original and transformed images using manually contoured thyroid masks. Creating models based on clinical, radiomic features or a combination thereof, we considered 3 variants of data preprocessing. Based on their performance metrics (sensitivity, specificity), we picked best models for each variant ((0.8, 0.96), (0.9, 0.93), (0.9, 0.89) variant-wise) and compared them with external NTCP models ((0.82, 0.88), (0.82, 0.88), (0.76, 0.91)). We showed that radiomic-based models did not outperform state-of-art NTCP models (p > 0.05). The potential benefit of radiomic-based approach is that it is dose-independent, and models can be used prior to treatment planning allowing faster selection of susceptible population.
Keyphrases
- radiation induced
- radiation therapy
- data analysis
- end stage renal disease
- newly diagnosed
- prognostic factors
- peritoneal dialysis
- optical coherence tomography
- deep learning
- gene expression
- magnetic resonance imaging
- hiv infected
- computed tomography
- squamous cell carcinoma
- electronic health record
- young adults
- mass spectrometry
- copy number
- quality improvement
- photodynamic therapy
- genome wide
- lymph node metastasis