Enhanced Photocarrier Separation in Hierarchical Graphitic-C3N4-Supported CuInS2 for Noble-Metal-Free Z-Scheme Photocatalytic Water Splitting.
Xiaoxue LiKeyu XieLong SongMengjia ZhaoZhipan ZhangPublished in: ACS applied materials & interfaces (2017)
The effective separation of photogenerated electrons and holes in photocatalysts is a prerequisite for efficient photocatalytic water splitting. CuInS2 (CIS) is a widely used light absorber that works properly in photovoltaics but only shows limited performance in solar-driven hydrogen evolution due to its intrinsically severe charge recombination. Here, we prepare hierarchical graphitic C3N4-supported CuInS2 (denoted as GsC) by an in situ growth of CIS directly on exfoliated thin graphitic C3N4 nanosheets (g-C3N4 NS) and demonstrate efficient separation of photoinduced charge carriers in the GsC by forming the Z-scheme system for the first time in CIS-catalyzed water splitting. Under visible light illumination, the GsC features an enhanced hydrogen evolution rate up to 1290 μmol g-1 h-1, which is 3.3 and 6.1 times higher than that of g-C3N4 NS and bare-CIS, respectively, thus setting a new performance benchmark for CIS-based water-splitting photocatalysts.