Login / Signup

Copper Regulates the Canonical NLRP3 Inflammasome.

Nikolaus DeigendeschArturo ZychlinskyRüdiger Klein
Published in: Journal of immunology (Baltimore, Md. : 1950) (2018)
Inflammasomes are multimeric protein complexes that are activated through a NOD-like receptor and regulate the proteolytic activation of caspase-1 and cytokines, like IL-1β. The NLRP3 inflammasome is implicated in many human pathologies including infections, autoinflammatory syndromes, chronic inflammation, and metabolic diseases; however, the molecular mechanisms of activation are not fully understood. In this study we show that NLRP3 inflammasome activation requires intracellular copper. A clinically approved copper chelator, tetrathiomolybdate, inhibited the canonical NLRP3 but not the AIM2, NLRC4, and NLRP1 inflammasomes or NF-κB-dependent priming. We demonstrate that NLRP3 inflammasome activation is blocked by removing copper from the active site of superoxide dismutase 1, recapitulating impaired inflammasome function in superoxide dismutase 1-deficient mice. This regulation is specific to macrophages, but not monocytes, both in mice and humans. In vivo, depletion of bioavailable copper resulted in attenuated caspase-1-dependent inflammation and reduced susceptibility to LPS-induced endotoxic shock. Our results indicate that targeting the intracellular copper homeostasis has potential for the treatment of NLRP3-dependent diseases.
Keyphrases