Login / Signup

PVP-Mediated Galvanic Replacement Synthesis of Smart Elliptic Cu-Ag Nanoflakes for Electrically Conductive Pastes.

Yu ZhangPeng-Li ZhuGang LiZhen CuiChengqiang CuiKai ZhangJian GaoXin ChenGuoqi ZhangRong SunChingping Wong
Published in: ACS applied materials & interfaces (2019)
Elliptic Cu-Ag nanoflakes were syntheszied via facile in situ galvanic replacement between prepared Cu particles and Ag ions. Alloy nanoflakes with high purity and uniformity present a size of 700 × 500 nm, with a thinness of 30 nm. Nontoxic and low-cost polyvinyl pyrrolidone was used as a dispersant and structure-directing agent, promoting the formation of the remarkable structure. Synthesized nanoflakes were utilized as a filler for conductive paste in an epoxy resin matrix. Conductive patterns on flexible substrates with a resistivity of 3.75 × 10-5 Ω·cm could be achieved after curing at 150 °C for 2 h. Compared with traditional silver microflakes, smart alloy nanoflakes provide much improved conductive interconnection, whose advantage could be attributed to their nanoscale thicknesses. It is also noteworthy that the conductive patterns are able to tolerate multiple bendings at different angles, having good conductivity even after 200 repeated bendings. Therefore, alloy nanoflakes could be a promising candidate conductive filler for flexible printing electronics, electronic packaging, and other conductive applications.
Keyphrases