2,3-Butanediol catabolism in Pseudomonas aeruginosa PAO1.
Qiuyuan LiuYidong LiuZhaoqi KangDan XiaoChao GaoPing XuCuiqing MaPublished in: Environmental microbiology (2018)
2,3-Butanediol (2,3-BD) is a primary microbial metabolite that enhances the virulence of Pseudomonas aeruginosa and alters the lung microbiome. 2,3-BD exists in three stereoisomeric forms: (2R,3R)-2,3-BD, meso-2,3-BD and (2S,3S)-2,3-BD. In this study, we investigated whether and how P. aeruginosa PAO1 utilizes these 2,3-BD stereoisomers and showed that all three stereoisomers were transformed into acetoin by (2R,3R)-2,3-butanediol dehydrogenase (BDH) or (2S,3S)-2,3-BDH. Acetoin was cleaved to form acetyl-CoA and acetaldehyde by acetoin dehydrogenase enzyme system (AoDH ES). Genes encoding (2R,3R)-2,3-BDH, (2S,3S)-2,3-BDH and the E1 and E2 components of AoDH ES were identified as part of a new 2,3-BD utilization operon. In addition, the regulatory protein AcoR promoted the expression of this operon using acetaldehyde, a cleavage product of acetoin, as its direct effector. The results of this study elucidate the integrated catabolic role of 2,3-BD and may provide new insights in P. aeruginosa-related infections.