Login / Signup

E-Beam Effects on Poly(Xylitol Dicarboxylate-co-diol Dicarboxylate) Elastomers Tailored by Adjusting Monomer Chain Length.

Marta Piątek-HnatKuba BombaJanusz P Kowalski-StankiewiczJakub PęksińskiAgnieszka KozłowskaJacek G SośnickiTomasz J IdzikBeata SchmidtKrzysztof KowalczykMarta WaloGrzegorz MikołajczakAgnieszka Elżbieta Kochmańska
Published in: Materials (Basel, Switzerland) (2021)
Poly(xylitol dicarboxylate-co-diol dicarboxylate) elastomers can by synthesized using wide variety of monomers with different chain lengths. Obtained materials are all biodegradable, thermally stable elastomers, but their specific properties like glass transition temperature, degradation susceptibility, and mechanical moduli can be tailored for a specific application. Therefore, we synthesized eight elastomers using a combination of two dicarboxylic acids, namely suberic and sebacic acid, and four different diols, namely ethanediol, 1,3-propanediol, 1,4-buanediol, and 1,5-pentanediol. Materials were further modified by e-beam treatment with a dose of 100 kGy. Materials both before and after radiation modification were tested using tensile tests, gel fraction determination, 1H NMR, and 13C NMR. Thermal properties were tested by Differential Scanning Calorimetry (DSC), Dynamic Thermomechanical Analysis (DMTA) and Thermogravimetric Analysis (TGA). Degradation susceptibility to both enzymatic and hydrolytic degradation was also determined.
Keyphrases
  • high resolution
  • magnetic resonance
  • drug delivery
  • smoking cessation
  • solid state
  • radiation therapy
  • nitric oxide
  • hydrogen peroxide
  • hyaluronic acid
  • solid phase extraction
  • replacement therapy