Login / Signup

Genetic diversity and historical demography in Bellamya gastropods from the Lake Victoria ecoregion reveal early and severe population collapse.

Nathan V WhelanEllen E Strong
Published in: Molecular ecology (2020)
Understanding the interplay between ecological and population genetic processes through space and time is a central goal of landscape genetics. However, most studies that place diversification dynamics in an ecological context have focused on vertebrates, leaving a significant gap in our understanding of the effects of ecosystem change on community composition and demography of invertebrates. In the East African Rift System, cichlid fishes have emerged as a powerful model system for understanding adaptive radiation (Kornfield & Smith, 2000), but few studies have examined diversification of other taxa. In this issue of Molecular Ecology, Van Bocxlaer et al. (2020) use landscape genetic approaches to model historical demography and diversification of viviparid gastropods in the Lake Victoria ecoregion. They show that while phylogeographic patterns are similar between the two, viviparids and cichlids have responded in very different ways to the climatic upheavals of the Pleistocene and that their responses have been at least partially asynchronous. Viviparids have experienced population collapse 30- to 50-fold more severe than that seen in haplochromine cichlids from the region, and population declines began 100K years earlier, prior to the last glacial maximum (~15,000-18,000 years ago). Their results reveal a new facet to the profound and lasting impacts of Pleistocene climate change on the modern fauna of the Lake Victoria ecoregion and its ability to respond to current human-mediated stressors.
Keyphrases
  • climate change
  • genome wide
  • genetic diversity
  • single cell
  • human health
  • healthcare
  • gene expression
  • dna methylation
  • risk assessment
  • radiation induced
  • drug induced
  • autism spectrum disorder