Alternative respiration pathway is involved in the response of highland barley to salt stress.
Qiang HeXiaomin WangLi HeLei YangShengwang WangYurong BiPublished in: Plant cell reports (2018)
Alternative respiration pathway is involved in the response of highland barley to salt stress. The response of two barley seedlings to salt stress was investigated. Results showed that the growth of highland barley (Kunlun 14) and barley (Ganpi 6) had no obvious difference under low concentrations (50, 100 and 200 mM) of NaCl treatment. However, high concentrations of NaCl treatment (300 and 400 mM) severely affected the growth of two barley cultivars. Under 300 mM NaCl treatment, the fresh weight, relative water content (RWC), pigments and K+ content reduced more in Ganpi 6 than in Kunlun 14. In contrast, the electrolyte leakage and the content of MDA, Na+, H2O2 and O2- increased more in Ganpi 6 than in Kunlun 14. The gene expression of AOX1a, HvNHX1, HvNHX3, HvHVP1, HvHVA, H+-ATPase, the alternative respiration capacity (Valt) and the enzymatic activity of SOD, POD, CAT, APX and H+-ATPase increased more in Kunlun14 than in Ganpi6 under 300 mM NaCl treatment, whereas the cytochrome respiration capacity (Vcyt) decreased similarly in both barley cultivars. Western blot analysis showed that the protein level of the alternative oxidase (AOX) increased more in Kunlun 14 than in Ganpi 6 under 300 mM NaCl treatment. Inhibition of the alternative respiration by salicylhydroxamic acid (SHAM) decreased the fresh weight, K+ content, Valt, H+-ATPase activity and the gene expression of AOX1a, HvNHX1, HvNHX3, HvHVP1, HvHVA, H+-ATPase, but increased the electrolyte leakage, MDA and Na+ content in both cultivars under 300 mM NaCl treatment. In short, alternative respiration is involved in the tolerance of highland barley to salt stress.