Login / Signup

2D Ultrathin Titanium Nitride Nanosheets as Separator Coatings for Li-S Batteries.

Shan LuLucheng CaiJiaqian WangHangjun YingZhong-Kang HanWei-Qiang HanZongping Chen
Published in: Small (Weinheim an der Bergstrasse, Germany) (2024)
Transition metal nitrides (TMNs) are affirmed to be an appealing candidate for boosting the performance of lithium-sulfur (Li-S) batteries due to their excellent conductivity, strong interaction with sulfur species, and the effective catalytic ability for conversion of polysulfides. However, the traditional bulk TMNs are difficult to achieve large active surface area and fast transport channels for electrons/ions simultaneously. Here, a 2D ultrathin geometry of titanium nitride (TiN) is realized by a facile topochemical conversion strategy, which can not only serve as an interconnected conductive platform but also expose abundant catalytic active sites. The ultrathin TiN nanosheets are coated on a commercial separator, serving as a multifunctional interlayer in Li-S batteries for hindering the polysulfide shuttle effect by strong capture and fast conversion of polysulfides, achieving a high initial capacity of 1357 mAh g -1 at 0.1 C and demonstrating a low capacity decay of only 0.046% per cycle over 1000 cycles at 1 C.
Keyphrases
  • solid state
  • metal organic framework
  • reduced graphene oxide
  • quantum dots
  • transition metal
  • visible light
  • gold nanoparticles
  • high efficiency
  • ion batteries
  • drug delivery
  • crystal structure
  • cancer therapy
  • single cell