Login / Signup

Panoramic Perspective on Human Phosphosites.

Pathmanaban RamasamyElien VandermarliereWim F VrankenLennart Martens
Published in: Journal of proteome research (2022)
Protein phosphorylation is the most common reversible post-translational modification of proteins and is key in the regulation of many cellular processes. Due to this importance, phosphorylation is extensively studied, resulting in the availability of a large amount of mass spectrometry-based phospho-proteomics data. Here, we leverage the information in these large-scale phospho-proteomics data sets, as contained in Scop3P, to analyze and characterize proteome-wide protein phosphorylation sites (P-sites). First, we set out to differentiate correctly observed P-sites from false-positive sites using five complementary site properties. We then describe the context of these P-sites in terms of the protein structure, solvent accessibility, structural transitions and disorder, and biophysical properties. We also investigate the relative prevalence of disease-linked mutations on and around P-sites. Moreover, we assess the structural dynamics of P-sites in their phosphorylated and unphosphorylated states. As a result, we show how large-scale reprocessing of available proteomics experiments can enable a more reliable view on proteome-wide P-sites. Furthermore, adding the structural context of proteins around P-sites helps uncover possible conformational switches upon phosphorylation. Moreover, by placing sites in different biophysical contexts, we show the differential preference in protein dynamics at phosphorylated sites when compared to the nonphosphorylated counterparts.
Keyphrases
  • mass spectrometry
  • endothelial cells
  • protein kinase
  • multidrug resistant
  • high resolution
  • protein protein
  • binding protein
  • small molecule
  • molecular dynamics
  • social media
  • single molecule
  • gas chromatography