Login / Signup

High-Pressure Photoluminescence Properties of Cr3+-Doped LaGaO3 Perovskites Modulated by Pressure-Induced Phase Transition.

Hansen HuaJumpei UedaJian XuMichele BackSetsuhisa Tanabe
Published in: Inorganic chemistry (2021)
The photoluminescence properties of Cr3+-doped LaGaO3 perovskites are investigated by high-pressure spectroscopy. The pressure-induced phase transition from orthorhombic (Pbnm) to rhombohedral (R3̅c) at around 2 GPa is confirmed by Raman spectroscopy. Cr3+-doped LaGaO3 shows deep-red emission peaks around 730 nm due to the zero-phonon line (R-line) and the phonon sidebands, which correspond to Cr3+: 2Eg → 4A2g transitions in the ideal octahedral site and the Cr-Cr pair luminescence (N-line) under ambient condition. Under a high pressure, the R-line shifts to a lower energy at a rate of -13 cm-1/GPa. From the pressure dependence of photoluminescence excitation (PLE) spectra, it is suggested that the redshift of the R-line is caused by the decrease of Racah parameters B and C. Moreover, the N-line luminescence becomes stronger relative to the R-line with increasing pressure and the N-line/R-line can be used to monitor the phase transition pressure. Under a high pressure, the tilt angle of the GaO6 octahedral unit becomes smaller. It implies that the enhanced N-line luminescence is caused by the stronger superexchange interaction between Cr3+ ions due to the increased Cr-O-Cr bond angle closer to 180°.
Keyphrases
  • quantum dots
  • energy transfer
  • high resolution
  • raman spectroscopy
  • mass spectrometry
  • single molecule
  • particulate matter
  • diabetic rats