Tuning Film Stresses for Open-Air Processing of Stable Metal Halide Perovskites.
Muneeza AhmadCarsen CartledgeGabriel McAndrewsAntonella GiuriMichael D McGeheeAurora RizzoNicholas RolstonPublished in: ACS applied materials & interfaces (2023)
Challenges to upscaling metal halide perovskites (MHPs) include mechanical film stresses that accelerate degradation, dominate at the module scale, and can lead to delamination or fracture. In this work, we demonstrate open-air blade coating of single-step coated perovskite as a scalable method to control residual film stress after processing and introduce beneficial compression in the thin film with the use of polymer additives such as gellan gum and corn starch. The optoelectronic properties of MHP films with compression are improved with higher photoluminescence yields. MHP film stability is significantly improved under compression, under humidity, heat, and thermal cycling. By measuring the evolution of film stresses, we demonstrate for the first time that stress relaxation occurs in MHP films with tensile stress that correlates with film degradation. This discovery of a new mechanism underpinning MHP degradation shows that film stress can be used as a parameter to screen MHP devices and modules for quality control before deployment as a design for reliability criterion.