Login / Signup

Engineering amino acid residues of pentacyclic triterpene synthases for improving the activity.

Hao GuoTongtong ChenHanrong ZhuHuiyan WangYi-Xin Huo
Published in: Applied microbiology and biotechnology (2024)
Pentacyclic triterpenoids exhibit a wide range of biological activities which have wide applications in the food, cosmetics, and pharmaceutical industries. High-performance chassis strains have been developed for the production of various pentacyclic triterpenoids, e.g., lupane-type and oleanane-type triterpenoids. The production of common pentacyclic triterpenes and their derivatives is limited by the poor activity of typical pentacyclic triterpene synthases (PTSs). However, a general strategy applicable to typical PTSs is still lacking. As typical pentacyclic triterpenes are derived from the baccharenyl cation, engineering the non-active-site residues in the MXXXXR motif might be beneficial for the catalytic efficiencies of typical PTSs by the stabilization of the baccharenyl cation. Here, we develop a general strategy for improving the activity of typical PTSs. As a proof of concept, the activity of three PTSs such as lupeol synthase, β-amyrin synthase, and α-amyrin synthases was significantly increased up to 7.3-fold by site-directed saturation mutagenesis. This strategy could be applied to improve the activity of various typical PTSs. KEY POINTS: • The strategy could be applied to typical PTSs for improving the activity. • The catalytic activity of typical PTSs was significantly increased.
Keyphrases
  • amino acid
  • escherichia coli
  • crispr cas
  • crystal structure