A TinyML Deep Learning Approach for Indoor Tracking of Assets.
Diego AvellanedaDiego Mendez ChGiancarlo FortinoPublished in: Sensors (Basel, Switzerland) (2023)
Positioning systems have gained paramount importance for many different productive sector; however, traditional systems such as Global Positioning System (GPS) have failed to offer accurate and scalable solutions for indoor positioning requirements. Nowadays, alternative solutions such as fingerprinting allow the recognition of the characteristic signature of a location based on RF signal acquisition. In this work, a machine learning (ML) approach has been considered in order to classify the RSSI information acquired by multiple scanning stations from TAG broadcasting messages. TinyML has been considered for this project, as it is a rapidly growing technological paradigm that aims to assist the design and implementation of ML mechanisms in resource-constrained embedded devices. Hence, this paper presents the design, implementation, and deployment of embedded devices capable of communicating and sending information to a central system that determines the location of objects in a defined environment. A neural network (deep learning) is trained and deployed on the edge, allowing the multiple external error factors that affect the accuracy of traditional position estimation algorithms to be considered. Edge Impulse is selected as the main platform for data standardization, pre-processing, model training, evaluation, and deployment. The final deployed system is capable of classifying real data from the installed TAGs, achieving a classification accuracy of 88%, which can be increased to 94% when a post-processing stage is implemented.
Keyphrases
- deep learning
- machine learning
- big data
- neural network
- artificial intelligence
- quality improvement
- convolutional neural network
- primary care
- air pollution
- electronic health record
- healthcare
- particulate matter
- high resolution
- health risk
- high throughput
- resistance training
- mass spectrometry
- body composition
- high intensity