Login / Signup

Light-Induced Selective Hydrogenation over PdAg Nanocages in Hollow MOF Microenvironment.

Luyan LiYanxiao LiLong JiaoXiaoshuo LiuZhentao MaYu-Jia ZengXusheng ZhengHai-Long Jiang
Published in: Journal of the American Chemical Society (2022)
Selective hydrogenation with high efficiency under ambient conditions remains a long-standing challenge. Here, a yolk-shell nanostructured catalyst, PdAg@ZIF-8, featuring plasmonic PdAg nanocages encompassed by a metal-organic framework (MOF, namely, ZIF-8) shell, has been rationally fabricated. PdAg@ZIF-8 achieves selective (97.5%) hydrogenation of nitrostyrene to vinylaniline with complete conversion at ambient temperature under visible light irradiation. The photothermal effect of Ag, together with the substrate enrichment effect of the catalyst, improves the Pd activity. The near-field enhancement effect from plasmonic Ag and optimized Pd electronic state by Ag alloying promote selective adsorption of the -NO 2 group and therefore catalytic selectivity. Remarkably, the unique yolk-shell nanostructure not only facilitates access to PdAg cores and protects them from aggregation but also benefits substrate enrichment and preferential -NO 2 adsorption under light irradiation, the latter two of which surpass the core-shell counterpart, giving rise to enhanced activity, selectivity, and recyclability.
Keyphrases