Negative symptoms and neurocognition in drug-naïve schizophrenia: moderating role of plasma neutrophil gelatinase-associated lipocalin (NGAL) and interferon-gamma (INF-γ).
Meijuan LiGuoshuai LuoYuying QiuXue ZhangXiaoxiao SunYanzhe LiYongping ZhaoWei SunShu YangJie LiPublished in: European archives of psychiatry and clinical neuroscience (2023)
Previous studies reported that peripheral inflammation was associated with cognitive performance and brain structure in schizophrenia. However, the moderating effect of inflammation has not been extensively studied. This study investigated whether inflammation markers moderated the association between negative symptoms and neurocognition in schizophrenia. This cross-sectional study included 137 drug-naïve schizophrenia patients (DNS) and 67 healthy controls (HC). We performed the Measurements and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery (MCCB) for cognitive assessment and the Positive and Negative Syndrome Scale (PANSS) for psychiatric symptoms. Plasma concentrations of interferon-gamma (IFN-γ), neutrophil gelatinase-associated lipocalin (NGAL), and nuclear factor kappa B (NF-κB) were measured. The MCCB neurocognition score, social cognition score, and total score; the plasma concentrations of NGAL, IFN-γ, and NF-κB were significantly decreased in DNS than in HC (all P's < 0.001). PANSS negative subscale (PNS), PANSS reduced expressive subdomain (RES) negatively correlated with neurocognition score (P = 0.007; P = 0.011, respectively). Plasma concentrations of IFN-γ and NGAL positively correlated with neurocognition score (P = 0.043; P = 0.008, relatively). The interactions of PNS × NGAL; PNS × IFN-γ; RES × IFN-γ accounted for significant neurocognition variance (P = 0.025; P = 0.029, P = 0.007, respectively). Simple slope analysis showed that all the above moderating effects only occurred in patients with near normal IFN-γ and NGAL levels. Plasma concentrations of IFN-γ and NGAL moderated the relationship between negative symptoms (especially RES) and neurocognition in schizophrenia. Treatment targeting inflammation may contribute to neurocognition improvement in schizophrenia.
Keyphrases
- bipolar disorder
- nuclear factor
- dendritic cells
- oxidative stress
- immune response
- signaling pathway
- healthcare
- mental health
- newly diagnosed
- end stage renal disease
- multidrug resistant
- blood brain barrier
- emergency department
- resting state
- cancer therapy
- physical activity
- prognostic factors
- pi k akt
- drug induced
- cerebral ischemia