Characterizing the phylogenetic specialism-generalism spectrum of mammal parasites.
Andrew W ParkMaxwell J FarrellJ P SchmidtShan HuangTad A DallasP PappalardoJ M DrakeP R StephensRobert PoulinCharles L NunnT J DaviesPublished in: Proceedings. Biological sciences (2019)
The distribution of parasites across mammalian hosts is complex and represents a differential ability or opportunity to infect different host species. Here, we take a macroecological approach to investigate factors influencing why some parasites show a tendency to infect species widely distributed in the host phylogeny (phylogenetic generalism) while others infect only closely related hosts. Using a database on over 1400 parasite species that have been documented to infect up to 69 terrestrial mammal host species, we characterize the phylogenetic generalism of parasites using standard effect sizes for three metrics: mean pairwise phylogenetic distance (PD), maximum PD and phylogenetic aggregation. We identify a trend towards phylogenetic specialism, though statistically host relatedness is most often equivalent to that expected from a random sample of host species. Bacteria and arthropod parasites are typically the most generalist, viruses and helminths exhibit intermediate generalism, and protozoa are on average the most specialist. While viruses and helminths have similar mean pairwise PD on average, the viruses exhibit higher variation as a group. Close-contact transmission is the transmission mode most associated with specialism. Most parasites exhibiting phylogenetic aggregation (associating with discrete groups of species dispersed across the host phylogeny) are helminths and viruses.