Login / Signup

Surfactant-Driven Dynamic Changes in Rheology of Activated Carbon Slurry Electrodes.

Mohan DasKangJin LeeChristopher L Wirth
Published in: ACS applied materials & interfaces (2024)
Carbon black slurry electrodes are an effective means to improve flow battery performance by increasing the active surface area necessary for electrochemical reactions with a cost-effective material. Current challenges with this specific flow battery chemistry include the stability and flowability of the carbon black suspensions, especially in response to formulation choices. Advancing the manufacturing, operation, and performance of these redox flow batteries requires a deeper understanding of how slurry formulation impacts its rheological profile and ultimately battery performance. In response to this need, the linear and nonlinear rheological responses of activated carbon (AC) based slurry electrode materials used in an all-iron flow battery in the presence of a nonionic surfactant (Triton X-100) were measured. Results from these measurements show the slurry is a colloidal gel with elasticity remaining constant despite increasing surfactant concentration until α (= C surf / C AC ) < 0.65. However, at α ≥ 0.65, the slurry abruptly transitions to a fluid with no measurable yield stress. This critical surfactant concentration at which the rheological profile undergoes a dynamic change matches the concentration found previously for gel collapse of this system. Moreover, this transition is accompanied by a complete loss of electrical conductivity. From these data we conclude the site specific adsorption of surfactant molecules often used in slurry formulation has a significant and dramatic impact on the stability and flowability of these suspensions. Work presented herein demonstrates the importance of additive choices when formulating a slurry electrode.
Keyphrases