Numerical and Experimental Modal Analysis of a Gyroid Inconel 718 Structure for Stiffness Specification in the Design of Load-Bearing Components.
Katarina MonkovaSanjin BrautPeter Pavol MonkaAnte SkoblarMartin PollákPublished in: Materials (Basel, Switzerland) (2024)
The study aims to investigate the modal properties of a 60 × 70 × 80 mm gyroid structure made of Inconel 718 with 67.5% porosity. The geometry model for sample production was created using the software PTC Creo, whereas the geometry model for numerical analysis was created using the Python application ScaffoldStructures. FE analysis was performed using ANSYS 2024 R1 software. Free boundary conditions were used in experimental modal analysis to ensure feasibility. The analysis identified the first four natural frequencies ranging from 10 to 16 kHz. The results revealed that the first natural frequency corresponds to the first torsional frequency about the Z axis, the second to the first flexural mode in the XZ plane, the third to the first bending mode in the YZ plane, and the fourth to the first torsional mode about the X axis. Small differences between the results of numerical and experimental modal analysis can be attributed to geometric errors in the manufactured sample, careless removal from the platform, and due to reduction in the complexity of the numerical FE model. Employing modal analysis of a component, the stiffness of a lightweight component can be revealed. In the case of the sample with the cellular structure of gyroid type, relatively high stiffness regarding the material savings was identified, which can be advantageously used in many applications.