Extinction and stationary distribution of a stochastic SIQR epidemic model with demographics and non-monotone incidence rate on scale-free networks.
Yuncheng XuXiaojun SunHua HuPublished in: Journal of applied mathematics & computing (2021)
By taking full consideration of contact heterogeneity of individuals, quarantine measures, demographics, information transmission and random environments, we present a stochastic SIQR epidemic model with demographics and non-monotone incidence rate on scale-free networks, which introduces stochastic perturbations to death rate. The formula of the basic reproduction number of the deterministic model is obtained by utilizing the existence of the endemic equilibrium. Next, we define a stopping time, then the existence of a unique global positive solution for the stochastic model is proved by constructing appropriate Lyapunov function to demonstrate the stopping time is infinite. In addition, we also manifest sufficient conditions for diseases extinction and the existence of ergodic stationary distribution by constructing appropriate stochastic Lyapunov functions. At last, numerical simulations illustrate the analytical results.