Sb-Doped SnO2 Nanorods Underlayer Effect to the α-Fe2 O3 Nanorods Sheathed with TiO2 for Enhanced Photoelectrochemical Water Splitting.
Hyungkyu HanStepan KmentFrantisek KarlickyLei WangAlberto NaldoniPatrik SchmukiRadek ZborilPublished in: Small (Weinheim an der Bergstrasse, Germany) (2018)
Here, a Sb-doped SnO2 (ATO) nanorod underneath an α-Fe2 O3 nanorod sheathed with TiO2 for photoelectrochemical (PEC) water splitting is reported. The experimental results, corroborated with theoretical analysis, demonstrate that the ATO nanorod underlayer effect on the α-Fe2 O3 nanorod sheathed with TiO2 enhances the PEC water splitting performance. The growth of the well-defined ATO nanorods is reported as a conductive underlayer to improve α-Fe2 O3 PEC water oxidation performance. The α-Fe2 O3 nanorods grown on the ATO nanorods exhibit improved performance for PEC water oxidation compared to α-Fe2 O3 grown on flat fluorine-doped tin oxide glass. Furthermore, a simple and facile TiCl4 chemical treatment further introduces TiO2 passivation layer formation on the α-Fe2 O3 to reduce surface recombination. As a result, these unique nanostructures show dramatically improved photocurrent density (139% higher than that of the pure hematite nanorods).