Login / Signup

Interfacial free energy of a liquid-solid interface: Its change with curvature.

P Montero de HijesJorge R EspinosaEduardo SanzCarlos Vega
Published in: The Journal of chemical physics (2019)
We analyze the changes in the interfacial free energy between a spherical solid cluster and a fluid due to the change of the radius of the solid. Interfacial free energies from nucleation studies using the seeding technique for four different systems, being hard spheres, Lennard-Jones, and two models of water (mW and TIP4P/ICE), were plotted as a function of the inverse of the radius of the solid cluster. In all cases, the interfacial free energy was a linear function of the inverse of the radius of the solid cluster and this is consistent with Tolman's equation. This linear behavior is shown not only in isotherms but also along isobars. The effect of curvature on the interfacial free energy is more pronounced in water, followed by hard spheres, and smaller for Lennard-Jones particles. We show that it is possible to estimate nucleation rates of Lennard-Jones particles at different pressures by using information from simple NpT simulations and taking into account the variation of the interfacial free energy with the radius of the solid cluster. Neglecting the effects of the radius on the interfacial free energy (capillarity approximation) leads to incorrect values of the nucleation rate. For the Lennard-Jones system, the homogeneous nucleation curve is not parallel to the melting curve as was found for water in previous work. This is due to the increase in the interfacial free energy along the coexistence curve as the pressure increases. This work presents a simple and relatively straightforward way to approximately estimate nucleation rates.
Keyphrases
  • ionic liquid
  • molecular dynamics simulations
  • perovskite solar cells
  • electron transfer
  • healthcare
  • molecular dynamics
  • mass spectrometry
  • social media
  • health information