Login / Signup

Nucleophilic reactivity of the gold atom in a diarylborylgold(i) complex toward polar multiple bonds.

Akane SuzukiXueying GuoZhenyang LinMakoto Yamashita
Published in: Chemical science (2020)
A di(o-tolyl)borylgold complex was synthesized via the metathesis reaction of a gold alkoxide with tetra(o-tolyl)diborane(4). The resulting diarylborylgold complex exhibited a Lewis acidic boron center and a characteristic visible absorption that arises from its HOMO-LUMO excitation, which is narrower than that of a previously reported dioxyborylgold complex. The diarylborylgold complex reacted with isocyanide in a stepwise fashion to afford single- and double-insertion products and a C-C coupled product. Reactions of this diarylborylgold complex with C[double bond, length as m-dash]O/N double bond species furnished addition products under concomitant formation of Au-C and B-O/N bonds, which suggests nucleophilic reactivity of the gold metal center. DFT calculations provided details of the underlying reaction mechanism, which involves an initial coordination of the C[double bond, length as m-dash]O/N bond to the boron vacant p-orbital of the diarylboryl ligand followed by a migration of the gold atom from the tetracoordinate sp3-hybridized boron center, which is analogous to the reactivity of the conventional sp3-hybridized borate species. The DFT calculations also suggested a stepwise mechanism for the reaction of this diarylborylgold complex with isocyanide, which afforded three different reaction products depending on the applied reaction conditions.
Keyphrases
  • molecular dynamics
  • density functional theory
  • electron transfer
  • pseudomonas aeruginosa
  • escherichia coli
  • staphylococcus aureus
  • gold nanoparticles
  • quantum dots
  • biofilm formation