Login / Signup

Optimal cutoff for the evaluation of insulin resistance through triglyceride-glucose index: A cross-sectional study in a Venezuelan population.

Juan SalazarValmore BermudezMaría CalvoLuis Carlos OlivarEliana LuzardoCarla NavarroHeysa MenciaMaría MartínezJosé Rivas-RíosSandra Wilches-DuránMarcos CerdaModesto GraterolRosemily GraterolCarlos GaricanoJuan HernándezJoselyn Rojas
Published in: F1000Research (2017)
Background: Insulin resistance (IR) evaluation is a fundamental goal in clinical and epidemiological research. However, the most widely used methods are difficult to apply to populations with low incomes. The triglyceride-glucose index (TGI) emerges as an alternative to use in daily clinical practice. Therefore the objective of this study was to determine an optimal cutoff point for the TGI in an adult population from Maracaibo, Venezuela. Methods: This is a sub-study of Maracaibo City Metabolic Syndrome Prevalence Study, a descriptive, cross-sectional study with random and multi-stage sampling. For this analysis, 2004 individuals of both genders ≥18 years old with basal insulin determination and triglycerides < 500 mg/dl were evaluated.. A reference population was selected according to clinical and metabolic criteria to plot ROC Curves specific for gender and age groups to determine the optimal cutoff point according to sensitivity and specificity.The TGI was calculated according to the equation: ln [Fasting triglyceride (mg / dl) x Fasting glucose (mg / dl)] / 2. Results: The TGI in the general population was 4.6±0.3 (male: 4.66±0.34 vs. female: 4.56±0.33, p=8.93x10 -10). The optimal cutoff point was 4.49, with a sensitivity of 82.6% and specificity of 82.1% (AUC=0.889, 95% CI: 0.854-0.924). There were no significant differences in the predictive capacity of the index when evaluated according to gender and age groups. Those individuals with TGI≥4.5 had higher HOMA2-IR averages than those with TGI <4.5 (2.48 vs 1.74, respectively, p<0.001). Conclusions: The TGI is a measure of interest to identify IR in the general population. We propose a single cutoff point of 4.5 to classify individuals with IR. Future studies should evaluate the predictive capacity of this index to determine atypical metabolic phenotypes, type 2 diabetes mellitus and even cardiovascular risk in our population.
Keyphrases