Login / Signup

Tetrafluoroborate-Induced Reduction in Defect Density in Hybrid Perovskites through Halide Management.

Satyawan NaganeStuart MacphersonMichael Allan HopeDominik J KubickiWeiwei LiSachin Dev VermaJordi Ferrer OrriYu-Hsien ChiangJudith L MacManus-DriscollClare P GreySamuel D Stranks
Published in: Advanced materials (Deerfield Beach, Fla.) (2021)
Hybrid-perovskite-based optoelectronic devices are demonstrating unprecedented growth in performance, and defect passivation approaches are highly promising routes to further improve properties. Here, the effect of the molecular ion BF4 - , introduced via methylammonium tetrafluoroborate (MABF4 ) in a surface treatment for MAPbI3 perovskite, is reported. Optical spectroscopy characterization shows that the introduction of tetrafluoroborate leads to reduced non-radiative charge-carrier recombination with a reduction in first-order recombination rate from 6.5 × 106 to 2.5 × 105 s-1 in BF4 - -treated samples, and a consequent increase in photoluminescence quantum yield by an order of magnitude (from 0.5 to 10.4%). 19 F, 11 B, and 14 N solid-state NMR is used to elucidate the atomic-level mechanism of the BF4 - additive-induced improvements, revealing that the BF4 - acts as a scavenger of excess MAI by forming MAI-MABF4 cocrystals. This shifts the equilibrium of iodide concentration in the perovskite phase, thereby reducing the concentration of interstitial iodide defects that act as deep traps and non-radiative recombination centers. These collective results allow us to elucidate the microscopic mechanism of action of BF4 - .
Keyphrases