Does fetal leptin and adiponectin influence children's lung function and risk of wheeze?
Blanche C IpNan LiMedina Jackson-BrowneMelissa EliotYingying XuAimin ChenBruce P LanphearAdam J SpanierJoseph M BraunPublished in: Journal of developmental origins of health and disease (2020)
Adipocytokines, which are secreted during fetal development by both mothers and fetuses, may influence fetal lung development, but little human data are available. We used data from the HOME Study to investigate the associations of cord blood adipocytokine concentrations with children's lung forced expiratory volume (FEV1; N = 160) and their risk of wheeze (N = 281). We measured umbilical cord serum adipocytokine concentrations using enzyme-linked immunosorbent assays and FEV1 using a portable spirometer at ages 4 and 5 to calculate the percent predicted FEV1 (%FEV1). Parents completed standardized questionnaires of their child's wheeze symptoms every 6 months from birth to age 5, then again at ages 6 and 8. We used multivariable linear mixed models and modified Poisson regression with generalized estimating equations to estimate associations of adipocytokine concentrations (log2-transformed) with children's %FEV1 and the risk of wheeze, respectively, adjusting for sociodemographic, perinatal, and child factors. Cord serum leptin was not associated with children's %FEV1. Higher cord serum adiponectin concentrations were associated with higher %FEV1 in girls (β = 3.1, 95% confidence interval [CI]: 0.6, 5.6), but not in boys (β = -1.3, 95% CI: -5.9, 3.3) (sex × adiponectin p-value = 0.05). Higher leptin was associated with lower risk of wheeze in girls (RR = 0.74, 95% CI: 0.66, 0.84), but not boys (RR = 0.87, 95% CI: 0.69, 1.11) (sex × leptin p-value = 0.01). In contrast, higher adiponectin concentrations were associated with lower risk of wheeze (RR = 0.84, 95% CI: 0.73, 0.96) in both boys and girls. These data suggest that fetal adipocytokines may impact lung development and function in early childhood. Future studies are needed to confirm these findings and explore the mechanisms underlying these associations.
Keyphrases
- young adults
- lung function
- metabolic syndrome
- cord blood
- umbilical cord
- mesenchymal stem cells
- insulin resistance
- electronic health record
- big data
- endothelial cells
- mental health
- pregnant women
- healthcare
- type diabetes
- magnetic resonance
- skeletal muscle
- computed tomography
- chronic obstructive pulmonary disease
- air pollution
- adipose tissue
- high throughput
- data analysis
- deep learning
- gestational age
- mechanical ventilation
- pregnancy outcomes