Login / Signup

Effect of Microimplant Neck Design with and without Microthread on Pullout Strength and Destruction Volume.

Yu-Chuan TsengHan-Sheng ChenSzu-Yu HsiaoKun-Jung HsuChun-Ming Chen
Published in: Materials (Basel, Switzerland) (2021)
The microthread neck concept has been applied to dental implants. This study investigated the pullout strength and destruction volume of orthodontic microimplants with and without the microthread neck design. Fifteen microimplants (diameter: 1.5 × 10 mm) of three types (Types A and B: without microimplant neck; Type C: with microimplant neck) were tested. The insertion torque (IT), Periotest value (PTV), horizontal pullout strength (HPS), and horizontal destruction volume (HDV) of each type were measured. Kruskal-Wallis H test and Dunn's post-hoc comparison test were performed to compare the measured values of the three types of microimplants. The correlations of the measured values were used to perform the Spearman's correlation coefficient analysis. The ITs of Types B (8.8 Ncm) and C (8.9 Ncm) were significantly higher than those of Type A (5.2 Ncm). Type B yielded the lowest PTV (4.1), and no statistical differences in PTV were observed among the three types. Type A had a significantly lower HPS (158.8 Ncm) than Types B (226.9 Ncm) and C (212.8 Ncm). The three types did not exhibit any significant differences in the HDV. The results of the Spearman's correlation coefficient test revealed that HDV (ρ = 0.710) and IT (ρ = 0.813) were strongly correlated with HPS, whereas for PTV and HPS, it was not. HPS was strongly and significantly correlated with HDV. The orthodontic microimplant with a microimplant neck design did not perform better than that without a microthread in the mechanical strength test.
Keyphrases
  • magnetic resonance
  • single cell
  • diffusion weighted imaging
  • high speed