Login / Signup

One-step hydrothermal synthesis of porous Ti3C2Tz MXene/rGO gels for supercapacitor applications.

Sanjit SahaKailash Dhondiram AroleMiladin RadovicJodie L LutkenhausMicah J Green
Published in: Nanoscale (2021)
Titanium carbide/reduced graphene oxide (Ti3C2Tz/rGO) gels were prepared by a one-step hydrothermal process. The gels show a highly porous structure with a surface area of ∼224 m2 g-1 and average pore diameter of ∼3.6 nm. The content of GO and Ti3C2Tz nanosheets in the reaction precursor was varied to yield different microstructures. The supercapacitor performance of Ti3C2Tz/rGO gels varied significantly with composition. Specific capacitance initially increased with increasing Ti3C2Tz content, but at high Ti3C2Tz content gels cannot be formed. Also, the retention of capacitance decreased with increasing Ti3C2Tz content. Ti3C2Tz/rGO gel electrodes exhibit enhanced supercapacitor properties with high potential window (1.5 V) and large specific capacitance (920 F g-1) in comparison to pure rGO and Ti3C2Tz. The synergistic effect of EDLC from rGO and redox capacitance from Ti3C2Tz was the reason for the enhanced supercapacitor performance. A symmetric two-electrode supercapacitor cell was constructed with Ti3C2Tz/rGO, which showed very high areal capacitance (158 mF cm-2), large energy density (∼31.5 μW h cm-2 corresponding to a power density of ∼370 μW cm-2), and long stability (∼93% retention) after 10 000 cycles.
Keyphrases
  • reduced graphene oxide
  • gold nanoparticles
  • stem cells
  • photodynamic therapy
  • bone marrow
  • quantum dots
  • cancer therapy