Integrated Sandwich-Paper 3D Cell Sensing Device to In Situ Wirelessly Monitor H 2 O 2 Released from Living Cells.
Zhuanzhuan ShiYunpeng LiXiao Shuai WuBo ChenWei SunChun Xian GuoChang Ming LiPublished in: Analytical chemistry (2024)
Point-of-care testing (POCT) has attracted great interest because of its prominent advantages of rapidness, precision, portability, and real-time monitoring, thus becoming a powerful biomedical device in early clinical diagnosis and convenient medical treatments. However, its complicated manufacturing process and high expense severely impede mass production and broad applications. Herein, an innovative but inexpensive integrated sandwich-paper three-dimensional (3D) cell sensing device is fabricated to in situ wirelessly detect H 2 O 2 released from living cells. The paper-based electrochemical sensing device was constructed by a sealed sandwiched bottom plastic film/fiber paper/top hole-centered plastic film that was printed with patterned electrodes. A new (Fe, Mn) 3 (PO 4 ) 2 /N-doped carbon nanorod was developed and immobilized on the sensing carbon electrode while cell culture solution filled the exposed fiber paper, allowing living cells to grow on the fiber paper surrounding the electrode. Due to the significantly shortening diffusion distance to access the sensing sites by such a unique device and a rationally tuned ratio of Fe 2+ /Mn 2+ , the device exhibits a fast response time (0.2 s), a low detection limit (0.4 μM), and a wide detection range (2-3200 μM). This work offers great promise for a low-cost and highly sensitive POCT device for practical clinic diagnosis and broad POCT biomedical applications.