Login / Signup

Insects with similar social complexity show convergent patterns of adaptive molecular evolution.

Kathleen A DogantzisBrock A HarpurAndré RodriguesLaura BeaniAmy L TothAmro Zayed
Published in: Scientific reports (2018)
Eusociality has independently evolved multiple times in the hymenoptera, but the patterns of adaptive molecular evolution underlying the evolution and elaboration of eusociality remain uncertain. Here, we performed a population genomics study of primitively eusocial Polistes (paper wasps), and compared their patterns of molecular evolution to two social bees; Bombus (bumblebees), and Apis (honey bees). This species triad allowed us to study molecular evolution across a gradient of social complexity (Polistes < Bombus < Apis) and compare species pairs that have similar (i.e. Polistes and Bombus) or different (i.e. Polistes and Apis) life histories, while controlling for phylogenetic distance. We found that regulatory genes have high levels of positive selection in Polistes; consistent with the prediction that adaptive changes in gene regulation are important during early stages of social evolution. Polistes and Bombus exhibit greater similarity in patterns of adaptive evolution including greater overlap of genes experiencing positive selection, and greater positive selection on queen-biased genes. Our findings suggest that either adaptive evolution of a few key genes underlie the evolution of simpler forms of eusociality, or that the initial stages of social evolution lead to selection on a few key traits orchestrated by orthologous genes and networks.
Keyphrases
  • genome wide
  • healthcare
  • mental health
  • genome wide identification