Login / Signup

Colossal Negative Linear Compressibility in Porous Organic Salts.

Yu ZhaoChangzeng FanCuiying PeiXu GengGuolong XingTeng BenShilun Qiu
Published in: Journal of the American Chemical Society (2020)
Negative linear compressibility (NLC) is a common sense violation (that is, crystal phases expand in one or more directions under hydrostatic compression). The excellent NLC performance of crystal materials is intrinsically related to the geometric structure of its skeleton. Here, we discovered a crystalline porous organic salt (CPOS-1); high-pressure X-ray diffraction experiments reveal that the CPOS-1 shows colossal NLC (Kc = -90.7 T Pa-1) behavior along the c axis. This incredible performance arises from the flexible "supramolecular spring" formed by the charge-enhanced N-H+···-O-S hydrogen bond interaction between the anionic sulfonate and the cationic ammonium ion. Furthermore, we reveal the relationship between this rare NLC behavior and single crystal proton conductivity using high-pressure electrochemical impedance spectroscopy (EIS) method. We believe that NLC behavior research on such inexpensive and readily available porous organic materials is of great significance for accelerating the research and application of NLC materials, especially in organic system.
Keyphrases