Login / Signup

Self-Assembly of Telechelic Tyrosine End-Capped PEO Star Polymers in Aqueous Solution.

Charlotte J C Edwards-GayleFrancesca GrecoIan William HamleyRobert P RamboMehedi RezaJanne RuokolainenDimitrios SkoulasHermis Iatrou
Published in: Biomacromolecules (2017)
We investigate the self-assembly of two telechelic star polymer-peptide conjugates based on poly(ethylene oxide) (PEO) four-arm star polymers capped with oligotyrosine. The conjugates were prepared via N-carboxy anhydride-mediated ring-opening polymerization from PEO star polymer macroinitiators. Self-assembly occurs above a critical aggregation concentration determined via fluorescence probe assays. Peptide conformation was examined using circular dichroism spectroscopy. The structure of self-assembled aggregates was probed using small-angle X-ray scattering and cryogenic transmission electron microscopy. In contrast to previous studies on linear telechelic PEO-oligotyrosine conjugates that show self-assembly into β-sheet fibrils, the star architecture suppresses fibril formation and micelles are generally observed instead, a small population of fibrils only being observed upon pH adjustment. Hydrogelation is also suppressed by the polymer star architecture. These peptide-functionalized star polymer solutions are cytocompatible at sufficiently low concentration. These systems present tyrosine at high density and may be useful in the development of future enzyme or pH-responsive biomaterials.
Keyphrases
  • electron microscopy
  • high density
  • cancer therapy
  • magnetic resonance
  • molecular dynamics simulations
  • magnetic resonance imaging
  • computed tomography
  • energy transfer