Login / Signup

Local Grand Canonical Monte Carlo Simulation Method for Confined Fluids.

Phuong VoHongduo LuKe MaJan ForsmanClifford E Woodward
Published in: Journal of chemical theory and computation (2019)
We describe a new local grand canonical Monte Carlo method to treat fluids in pores in chemical equilibrium with a reference bulk. The method is applied to Lennard-Jones particles in pores of different geometry and is shown to be much more accurate and efficient than other techniques such as traditional grand canonical simulations or Widom's particle insertion method. It utilizes a penalty potential to create a gas phase, which is in equilibrium with a more dense liquid component in the pore. Grand canonical Monte Carlo moves are employed in the gas phase, and the system then maintains chemical equilibrium by "diffusion" of particles. This creates an interface, which means that the confined fluid needs to occupy a large enough volume so that this is not an issue. We also applied the method to confined charged fluids and show how it can be used to determine local electrostatic potentials in the confined fluid, which are properly referenced to the bulk. This precludes the need to determine the Donnan potential (which controls electrochemical equilibrium) explicitly. Prior approaches have used explicit bulk simulations to measure this potential difference, which are significantly costly from a computational point of view. One outcome of our analysis is that pores of finite cross-section create a potential difference with the bulk via a small but nonzero linear charge density, which diminishes as ∼1/ln(L), where L is the pore length.
Keyphrases
  • monte carlo
  • molecular dynamics
  • molecular dynamics simulations
  • human health
  • high resolution
  • gold nanoparticles
  • mass spectrometry
  • climate change