Login / Signup

Raman and Quantum Yield Studies of Trp48-d5 in Azurin: Closed-Shell and Neutral Radical Species.

Joel J RiveraJustine H LiangGregory R ShimamuraHannah S ShafaatJudy E Kim
Published in: The journal of physical chemistry. B (2019)
Isotopologues are valuable vibrational probes that shift features in a vibrational spectrum while preserving the electronic structure of the molecule. We report the vibrational and electronic spectra of perdeuterated tryptophan in solution (l-Trp-d5), as Trp48-d5 in azurin, and as the photogenerated neutral tryptophan radical, Trp48-d5•, in azurin. The UV resonance Raman bands of the perdeuterated closed-shell tryptophan in solution and in azurin are lower in frequency relative to the protiated counterpart. The observed decrease in frequencies of l-Trp-d5 bands relative to l-Trp-h5 enables the analysis of vibrational markers of other amino acids, e.g., phenylalanine, that overlap with some modes of l-Trp-h5. The Raman intensities vary between l-Trp-d5 and l-Trp-h5; these differences likely reflect modifications in normal mode composition upon perdeuteration. Analysis of the W3, W6, and W17 modes suggests that the W3 mode retains its utility as a conformational marker; however, the H-bond markers W6 and W17 appear to be less sensitive upon perdeuteration. The neutral tryptophan radical, Trp48-d5•, was generated in azurin with a slightly lower radical quantum yield than for Trp48-h5•. The visible resonance Raman spectrum of Trp48-d5• is different from that of Trp48-h5•, especially in terms of relative intensities, and all assignable peaks decreased in frequency upon perdeuteration. The absorption and emission spectra of the perdeuterated closed-shell and radical species exhibited hypsochromic shifts of less than 1 nm relative to the protiated species. The data presented here indicate that l-Trp-d5 is a valuable probe of vibrational structure, with minimal modification of photoreactivity and photophysics compared to l-Trp-h5.
Keyphrases
  • energy transfer
  • density functional theory
  • molecular dynamics simulations
  • molecular dynamics
  • raman spectroscopy
  • machine learning
  • big data
  • quantum dots
  • fluorescence imaging
  • monte carlo