Login / Signup

Coarse-Grained Model of Thiol-Epoxy-Based Alternating Copolymers in Explicit Solvents.

Shanlong LiRui CuiChun-Yang YuYongfeng Zhou
Published in: The journal of physical chemistry. B (2022)
The cosolvent method has been widely used in the self-assembly of amphiphilic alternating copolymers (ACPs), but the role of good and selective solvents is rarely investigated. Here, we have developed a coarse-grained (CG) model for the widely studied thiol-epoxy-based amphiphilic ACPs and a three-bead CG model for tetrahydrofuran (THF) as the good solvent, which is compatible with the MARTINI water model. The accuracy of both the CG polymer and THF models was validated by reproducing the structural and thermodynamic properties obtained from experiments or atomistic simulation results. Density in bulk, the radius of gyration, and solvation free energy in water or THF showed a good agreement between CG and atomistic models. The CG models were further employed to explore the self-assembly of ACPs in THF/water mixtures with different compositions. Chain folding and liquid-liquid phase separation behaviors were found with increasing water fractions, which were the key steps of the self-assembly process. This work will provide a basic platform to explore the self-assembly of amphiphilic ACPs in solvent mixtures and to reveal the real role of different solvents in self-assembly.
Keyphrases
  • ionic liquid
  • molecular dynamics simulations
  • molecular dynamics
  • gene expression
  • single molecule
  • mass spectrometry
  • high resolution