Virtual Sensor Array Based on Butterworth-Van Dyke Equivalent Model of QCM for Selective Detection of Volatile Organic Compounds.
Dongsheng LiZihao XieMengjiao QuQian ZhangYong Qing Richard FuJin XiePublished in: ACS applied materials & interfaces (2021)
Recently virtual sensor arrays (VSAs) have been developed to improve the selectivity of volatile organic compound (VOC) sensors. However, most reported VSAs rely on detecting single property change of the sensing material after their exposure to VOCs, thus resulting in a loss of much valuable information. In this work, we propose a VSA with the high dimensionality of outputs based on a quartz crystal microbalance (QCM) and a sensing layer of MXene. Changes in both mechanical and electrical properties of the MXene film are utilized in the detection of the VOCs. We take the changes of parameters of the Butterworth-van Dyke model for the QCM-based sensor operated at multiple harmonics as the responses of the VSA to various VOCs. The dimensionality of the VSA's responses has been expanded to four independent outputs, and the responses to the VOCs have shown good linearity in multidimensional space. The response and recovery times are 16 and 54 s, respectively. Based on machine learning algorithms, the proposed VSA accurately identifies different VOCs and mixtures, as well as quantifies the targeted VOC in complex backgrounds (with an accuracy of 90.6%). Moreover, we demonstrate the capacity of the VSA to identify "patients with diabetic ketosis" from volunteers with an accuracy of 95%, based on the detection of their exhaled breath. The QCM-based VSA shows great potential for detecting VOC biomarkers in human breath for disease diagnosis.
Keyphrases
- machine learning
- loop mediated isothermal amplification
- real time pcr
- label free
- endothelial cells
- type diabetes
- high resolution
- artificial intelligence
- ionic liquid
- cancer therapy
- mass spectrometry
- climate change
- gold nanoparticles
- dna methylation
- drug delivery
- wound healing
- induced pluripotent stem cells
- human health