Login / Signup

Effect of Incorporated ZnO Nanoparticles on the Corrosion Performance of SiO2 Nanoparticle-Based Mechanically Robust Epoxy Coatings.

Ubair Abdus SamadMohammad Asif AlamArafat AnisEl-Sayed M SherifSulaiman I Al-MaymanSaeed M Al-Zahrani
Published in: Materials (Basel, Switzerland) (2020)
This paper presents the studies of the development of a high-performance epoxy coating for steel substrates. To this end, it investigated the synergistic effect of incorporating zinc oxide (ZnO) nanoparticles into nanosilica containing epoxy formulations. The mechanical properties of the epoxy coating formulations were improved by modifying the surfaces of the silica nanoparticles (5 wt.%) with 3-glycidoxypropyl trimethoxysilane, which ensured their dispersal through the material. Next, the ZnO nanoparticles (1, 2, or 3 wt.%) were incorporated to improve the corrosion performance of the formulations. The anticorrosive properties of the coatings were examined by electrochemical impedance spectroscopy (EIS) of coated mild steel specimens immersed in 3.5% NaCl solution over different time intervals (1 h to 30 days). Incorporation of the ZnO nanoparticles and the nanosilica into the coating formulation improved the corrosion resistance of the epoxy coating even after long-term exposure to saline test solutions. Finally, to evaluate how the nanoparticles affected the chemical and morphological properties of the prepared coatings, the coatings were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD).
Keyphrases